

ELIZADE UNIVERSITY, ILARA-MOKIN, NIGERIA

FACULTY: BASIC & APPLIED SCIENCES

DEPARTMENT: BIOLOGICAL SCIENCES

SECOND SEMESTER EXAMINATION

2017/2018 ACADEMIC SESSION

COURSE CODE:	BTH 414	
COURSE TITLE:	MOLECULAR GENETICS	
DURATION:	2 HOURS	HOD's SIGNATURE
NAME:		
MAT. No:		
INSTRUCTION:	Answer four questions in total	

Every set of questions carry equal marks

- 1. Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are important genetic particles involved in eellular modifications.
 - i. In a tabular format, list the three types of RNA and their function.
 - ii. Explain DNA transcription in detail with diagrammatic representations where possible.
- 2. After transcription, the DNA configuration produces a set of codons
 - a. Give the relationship between the genetic code and configuration of codons.
 - b. Explain with example why more than one codon can code for different amino acids.
- 3. Mutation is a change in the genetic code of an organism.
 - i. Briefly explain the effects of mutations on protein structure.
 - ii. Describe wobble phenomena during translation.
- 4. DNA and RNA are two contrasting cellular molecules
 - a. Compare and contract DNA and RNA.
 - b. What are the applications of polymerase chain reaction in genetics and biotechnology.
- 5. Describe:
 - a. the procedure involved in Polymerase Chain Reaction.
 - b. the functions of the following enzymes:
 - i. DNA helicase
 - ii. DNA primase
 - iii. DNA polymerase Ligase
- 6. Write short note on the following:
 - a. DNA replication
 - b. Genetic recombination
 - c. Nucleic acid
 - d. PCR limitations